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Introduction
With 10.6 million active cases and 1.6 million deaths annually, 
tuberculosis (TB) causes greater mortality than any other single 
pathogen (1). Treatment regimens for TB require months of ther-
apy with high rates of associated toxicities and rising drug resis-
tance (1, 2). From 1985 to 1992, the TB incidence rate in the Unit-
ed States increased for the first time after decades of decline, an 
event that stimulated a new era of intensive research on TB (3). 
In 1998, Stewart Cole at the Institut Pasteur and colleagues at the 
Sanger Centre in the United Kingdom published the first complete 
genome sequence of a Mycobacterium tuberculosis strain, the vir-
ulent laboratory reference strain H37Rv (4). While the genome 
sequence was already transformative at the time, the past 25 years 
of progress have substantially increased its impact on TB taxon-
omy, drug discovery, resistance mechanisms, epidemiology, vac-
cine development, and pathogenesis.

Whole-genome sequencing (WGS) of M. tuberculosis and 
related mycobacteria is now routine, allowing comparisons across 
time and space. This increased capability has enabled epidemio-
logical studies at the local and global levels to track TB outbreaks 
and discover features suggestive of increased transmissibili-
ty (5–7). Likewise, diagnostics for multi-drug-resistant (MDR) 
and extensively drug-resistant (XDR) strains make heavy use of 
knowledge gleaned from M. tuberculosis genome sequencing (8, 
9). The recent development of novel antitubercular drugs, includ-
ing bedaquiline, pretomanid, and delamanid, shows how genom-
ics can be used to understand bacterial susceptibilities to therapy 

(10, 11). Beyond pathogenic M. tuberculosis strains, sequencing of 
the live attenuated bacillus Calmette-Guérin (BCG) vaccine for 
TB has increased recognition of global vaccine heterogeneity, 
with potential implications for patient immunity and studies to 
improve vaccination (12–15).

The M. tuberculosis genome has ushered in a quarter century 
of substantial clinical and public health advancements. Along-
side gene transfer, the vital technology enabling manipulation of 
mycobacterial DNA, these discoveries built the foundation for 
much modern M. tuberculosis work (16–27). For example, greater 
sequencing depth has uncovered bacterial polymorphisms whose 
roles in host adaptation and antimicrobial resistance remain under 
investigation (28–31). In addition, temporal studies have identi-
fied M. tuberculosis heterogeneity within individual patients and 
have demonstrated a progressive evolutionary process leading to 
drug resistance at the population level (32–36). Lastly, improve-
ments in genome-wide screening studies have shown promise in 
identifying candidate pathways to target therapeutically (37–39). 
We comment here on what has already been achieved as a result of 
the M. tuberculosis genome sequence and also explore what more 
the M. tuberculosis genome may yield.

M. tuberculosis lineages
Not long after the first M. tuberculosis genome sequence was 
assembled, additional studies revealed the global diversity of M. 
tuberculosis genotypes. Previous methods of typing M. tuberculosis 
strains, including IS6110-RFLP (restriction fragment length poly-
morphism), spoligotyping (spacer oligonucleotide typing, which 
is recognized as using CRISPR array spacers), and MIRU-VNTR 
(mycobacterial interspersed repetitive unit variable number tan-
dem repeat) typing, had found some success using variable num-
bers or positions of repetitive genomic elements, although they 
were limited by the low abundance and occasional non-unique-
ness of these markers (40, 41). Indeed, previous attempts to 
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to 40%–60% of TB cases there (50). Notably, the animal-adapted 
lineages of the broader M. tuberculosis complex, including M. bovis, 
share ancestry with L6 (51). Beyond these overarching categories, 
the modern lineages can be divided into sublineages that also cor-
relate with human population geography (52, 53). These sublin-
eages can be further classified into “generalist” sublineages with 
broader global distribution and greater variability in T cell epitopes 
than the more geographically confined “specialist” sublineages 
(53). Consistent with these observations, recent evidence argues 
for sympatric spread among specialist sublineages, suggesting that 
specialist strains have adapted to the human host genetics in their 
endemic regions (54). Recent methods expand beyond the use of 
RDs and incorporate SNPs into a highly granular sublineage classi-
fication schematic (55, 56).

By integrating the diversity of modern M. tuberculosis 
genomes, attempts have been made to determine the origin of 
human-adapted TB disease and follow its evolution with changing 
human migration and behavior. The discovery of Mycobacterium 
canettii in the Republic of Djibouti and its subsequent genomic 
characterization as an M. tuberculosis ancestor localized the origin 
of ancient TB to an origin around the Horn of Africa (57–59). Clin-
ically, M. canettii strains are of relatively low virulence, and their 
genomes are generally devoid of the RDs/LSPs that define lineag-
es L1–L9 (46, 60). Solidifying an emergence in East Africa, a new 
ancestral lineage with very deep phylogenetic branching, L7, was 
found in Ethiopia in 2012 and appears limited to residents of and 
immigrants from the region (61). In the past few years, two more 
analogously restricted East African lineages (L8–L9) were char-
acterized (60, 62). While horizontal gene transfer mechanisms 
are not believed to occur in modern M. tuberculosis genomes, the 
ancient genome contains a mosaic of genetic material, likely from 
nonpathogenic bacteria (59). Earlier efforts to sequence large M. 
tuberculosis genomic regions identified a comparatively low rate 
of silent nucleotide mutations in comparison with other human 
pathogens, suggesting a population bottleneck with M. tuberculo-
sis adaptation to the parasitic lifestyle (63). These findings collec-
tively suggest a model in which environmental bacteria supplied 
genomic material to what would become the obligate human 
pathogen M. tuberculosis, replacing historical arguments for a zoo-
notic origin (59, 64). From East Africa, M. tuberculosis would have 
spread globally alongside its human host populations, and indeed 
the phylogeny of human mitochondrial DNA shows similar topolo-
gy to that of the M. tuberculosis lineages (64). Like its human hosts, 
M. tuberculosis underwent several population bottlenecks during 
geographic spread (65). These events were followed by periods of 
diversification featuring many non-synonymous SNPs, notably in 
cell envelope proteins that may have facilitated bacterial virulence 
by adapting to the host immune system (65, 66). Alterations in 
human population demographics correlate well with M. tuberculo-
sis evolution on both the ancient time scale, such as the dissemina-
tion of the L2 Beijing sublineage as an agricultural lifestyle spread 
from China across East Asia 3,000–5,000 years ago, and the near-
er time scale, such as the spread of this sublineage to Afghanistan 
during recent wars and the rise in TB drug resistance in former 
Soviet states with the collapse of the USSR (64, 67). These findings 
demonstrate the impressive power of the M. tuberculosis genome 
to record and adapt to host changes throughout human history. 

predict clinical strain parameters by IS6110 copy number were 
found to be suboptimal, as the so-called low-copy and high-copy 
groups were later shown to be polyphyletic (42, 43). In contrast, 
comparing single-nucleotide polymorphisms (SNPs) across the 
genome allowed for unambiguous, higher-resolution assignment 
of M. tuberculosis strains into lineage clusters (Figure 1) (41–43). 
Strikingly, the broad lineages of M. tuberculosis also clustered with 
the birthplaces of the patients they infected, suggesting that the 
M. tuberculosis phylogeny and indeed the M. tuberculosis genome 
had captured geographic information (43, 44). Comparing M. 
tuberculosis strains from diverse lineages showed a paucity of large 
genomic deletions and rearrangements, evidence of an exception-
ally stable genome among bacteria that preserved historical infor-
mation (44). By the turn of the century, the M. tuberculosis genome 
was recognized as a powerful spatiotemporal resource to under-
stand the epidemiology of the disease.

M. tuberculosis has been classified into nine lineages mainly 
on the basis of large-scale genomic variations, variably described 
as regions of difference (RDs) or large sequence polymorphisms 
(LSPs) (45, 46). Lineages 2–4 (L2–L4) constitute a monophylet-
ic group defined by the TbD1 deletion, a loss of the membrane 
proteins MmpS6 and MmpL6 that appears to confer enhanced 
resistance to oxidative and hypoxic stressors (47, 48). Collectively 
termed the “modern” lineages, L2–L4 cause the majority of globally 
distributed TB epidemics and hence most of the TB disease burden 
(Figure 2) (49). Among these, L4 has the broadest range, spanning 
throughout Africa, Asia, Europe, and the Americas. L2 causes the 
largest proportion of TB cases in East Asia as well as some cases in 
Central Asia and notably includes the hypervirulent Beijing strains, 
while L3 exists mainly in India, with additional presence in East 
Africa. The remaining “ancestral” lineages include L1, which pre-
dominantly occurs in Southeast Asia and India and has the widest 
distribution of the ancestral lineages. L5–L9 seemingly arise only 
in Africa, with L5–L6 (classically dubbed M. africanum) causing up 

Figure 1. Phylogeny of M. tuberculosis lineage strains. Simplified maxi-
mum likelihood phylogeny of the 9 lineages of M. tuberculosis, as well as 
the related M. bovis strain and the M. canettii outgroup strain used as a 
root. Adapted with permission from Microbial Genomics (60).
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nition, the observed differences in global transmissibility suggest 
subtler differences in virulence by lineage due to genome varia-
tions, as has been suggested by high-throughput studies (73).

Antimicrobial resistance
The growing antimicrobial resistance of M. tuberculosis presents 
an enormous clinical, financial, and public health challenge (1). 
Genomic sequencing has shown considerable promise in predict-
ing M. tuberculosis susceptibility to TB drugs, and gene transfer had 
enabled the discovery of resistance genotypes, thereby elucidating 
previously unknown mechanisms of action (27, 77). In a study of 
over 10,000 clinical isolates, WGS informed by known resistance 
gene variants was successful in predicting susceptibility to isonia-
zid, rifampicin, ethambutol, and pyrazinamide, with sensitivities 
of 97.1%, 97.5%, 94.6%, and 91.3%, respectively (78). As a direct 
clinical diagnostic, WGS has been proposed for TB susceptibility 
testing in low-incidence, high-resource settings based primarily on 
its more rapid time to results than conventional culture-based test-
ing (which typically requires about 2 weeks after initial cultivation), 
alongside a slightly cheaper cost (79–81). In 2017, the United King-
dom adopted a policy of routine WGS for taxonomic and drug sus-
ceptibility testing of positive mycobacterial cultures. Subsequent 
retrospective analyses found partial success, noting the potential 
benefits of WGS but also the substantial lag in turnaround time, 
which is of particular concern regarding isoniazid resistance (82). 

Simultaneously, the recent data in particular highlight the ten-
dency of M. tuberculosis to exploit periods of social instability and 
forced migration to escalate into a greater public health threat.

The non-random expansion of particular M. tuberculosis lin-
eages into global pandemics suggests that these strains may have 
altered properties relevant to disease outcomes, a hypothesis that 
echoes the validation of the TbD1 deletion as a gain-of-virulence 
event based on animal model studies (48). Relatedly, differing 
lineages have been found to elicit variable immune responses in 
cellular and animal model systems, and there is some evidence of 
differential immune modulation by the modern lineages related 
to these properties (68–73). L2, for example, has been found to 
induce lower levels of inflammatory cytokines than L4 in some but 
not all studies (68, 69, 74). However, care must be taken in syn-
thesizing results between such studies, particularly in attempting 
to generalize results from individual strains across entire lineag-
es. As an example, virulence factors may exist only among certain 
subgroups within a lineage, as is the case with the cell wall pheno-
lic glycolipid (PGL) that facilitates immune evasion by the subsets 
of the Beijing sublineage that express it (75, 76). Consistent with 
this explanation, a comparatively modern Beijing strain was found 
to cause reduced cytokine secretion in a macrophage model when 
compared with a more ancestral Beijing strain, despite similarities 
in bacterial burden and growth rate (71). While all M. tuberculosis 
strains isolated from patients with active TB are virulent by defi-

Figure 2. Cartogram of global TB burden by M. tuberculosis lineage. Country areas are scaled to reflect TB incidence in 2021 (1) using the go-cart.io algo-
rithm (172). Pie charts reflect distributions of the M. tuberculosis lineages L1–L9, as well as the animal-adapted M. bovis, M. caprae, and M. orygis, from 
clinical isolates by geographic region as previously described by Napier et al. (56).
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suggested that the compound could kill even dormant bacteria 
(90, 91). This atpE mutant was identified by genome sequencing of 
the model organism M. smegmatis and confirmed to likewise arise 
in resistant M. tuberculosis (90, 92). Testing across mycobacterial 
species demonstrated broad activity against many non-tuberculo-
sis mycobacteria, except for M. xenopi, which was found by WGS 
to have a preexisting polymorphism at an atpE position known to 
confer resistance (90, 93). Subsequently, mutations in Rv0678, a 
repressor of the MmpS5/MmpL5 efflux machinery, were identified 
by WGS to cause cross-resistance to both bedaquiline and clofazi-
mine (94). While reports differ, some sequencing studies argue that 
the off-target Rv0678 polymorphisms are more frequent than atpE 
mutations in clinical isolates, at least in certain settings (95–97). An 
additional concern is the high prevalence of preexisting Rv0678 
mutations conferring measurably increased minimal inhibitory 
concentrations for bedaquiline and clofazimine in populations with 
no known prior use of either drug, since it had been assumed that 
bedaquiline would be effective in virtually all M. tuberculosis isolates 
early in its use (98).

Unlike the mechanism of action of bedaquiline, that of the 
nitroimidazoles pretomanid and delamanid was not readily 
apparent upon selection for resistance mutations. Initial charac-
terizations identified resistance mutations in an F420-dependent 
enzyme, fgd1; however, other resistance mutations were soon 
reported from genome sequencing data (99, 100). Furthermore, 
despite evidence that pretomanid treatment impaired synthesis 
of ketomycolic acids, this was unlikely to be the mechanism of M. 
tuberculosis killing, as the drug was bactericidal even in non-rep-
licating culture conditions when the bacterium would have little 
need to produce a cell wall component (99). Subsequent work 
found that fgd1 is one half of a pair of redox enzymes that acts 
cyclically on the F420 redox cofactor, the other of which is ddn, 
a nitroreductase that activates pretomanid to eventually form 
bactericidal nitric oxide (101, 102). Resistance to pretomanid can 
thus occur via mutations in either fgd1 or ddn, or alternatively in 
the fbiABCD genes that synthesize F420 (95, 101, 103). Hence, 
the characterization by WGS of resistance polymorphisms to the 
nitroimidazole drugs led to the discovery of a mycobacterial meta-
bolic pathway and a more plausible mechanism of killing: reactive 
nitrogen species production. In this way, genome sequencing can 
assign functions to unknown gene products. As with bedaquiline, 
mutations in the nitroimidazole-activating pathway genes have 
been found that predate drug use, some of which are predicted to 
confer resistance (104). Peculiarly, not all pretomanid-resistant 
mutants are cross-resistant to delamanid, so careful WGS of pre-
tomanid-resistant, delamanid-susceptible isolates and vice versa 
is needed to fully characterize M. tuberculosis resistance patterns 
for the nitroimidazole class (103, 105).

Epidemiology
Outbreak tracing. WGS can exploit polymorphisms in M. tubercu-
losis genomic isolates for robust epidemiological tracing regard-
less of whether the polymorphisms have a known functional role. 
On the local scale, genome sequencing can resolve TB outbreaks 
down to individual-level spreading events, enabling the identifica-
tion of social and socioeconomic factors contributing to transmis-
sion (5–7). Older methods such as MIRU-VNTR typing may be suf-

Both cost and turnaround time would be expected to decrease as 
sequencing technology improves and is better incorporated into 
the clinical workflow. Notably, proof-of-concept studies in the 
Kyrgyz Republic and South Africa have demonstrated a potential 
role for M. tuberculosis WGS for resistance testing in low- and mid-
dle-income, high-burden countries (9, 83). Settings with a known 
high burden of MDR- and XDR-TB in particular may benefit from 
using WGS to identify and discontinue ineffective drugs, which fre-
quently carry high toxicities for patients (9).

Beyond its role in diagnostics, sequencing the M. tuberculo-
sis genome catalyzed the development of tests for M. tuberculosis 
drug resistance, notably the Xpert platform with MTB/XDR car-
tridges. Using microfluidics, this instrument amplifies M. tubercu-
losis genomic regions of interest and employs 10 molecular bea-
con probes to detect characteristic shifts in hybridization melting 
temperature. The assay identifies known resistance mutations to 
isoniazid, fluoroquinolones, and select second-line drugs direct-
ly from patient sputum or other clinical samples (8). Additional-
ly, the test distinguishes between low- and high-level resistance 
mutations to isoniazid and fluoroquinolones, as well as cross-re-
sistance to multiple second-line drugs (8). These genomic targets 
were gleaned from sequencing of many resistant M. tuberculo-
sis isolates to define a list of the most common mutations. Early 
studies of the Xpert MTB/XDR test for clinical evaluation showed 
promising results, with 98% to 100% specificity for each of iso-
niazid, fluoroquinolones, ethionamide, amikacin, kanamycin, and 
capreomycin (84, 85). Sensitivity was highest for isoniazid and flu-
oroquinolones but low for ethionamide; this was attributed to the 
comparatively poorly characterized ethA resistance mutations and 
highlighted that molecular tests are limited by the genomic knowl-
edge that underpins them (81, 84).

Unique among diagnostic methods, WGS can not only examine 
known resistance-associated polymorphisms but also predict nov-
el variants associated with phenotypic resistance. Using principles 
including positive selection, convergent evolution, and non-syn-
onymous to synonymous SNP ratios, several groups have built 
lists of genes and genomic regions that may represent unknown 
M. tuberculosis resistance mechanisms or help compensate for the 
fitness costs of co-occurring ones (28–30). Intriguingly, the preva-
lence of particular resistance mutations differs between lineages, 
suggesting that local M. tuberculosis strain demographics must also 
be considered when cataloging resistance mechanisms (86). The 
Comprehensive Resistance Prediction for Tuberculosis: an Inter-
national Consortium (CRyPTIC) collaboration recently published 
a compendium of phenotype-validated M. tuberculosis WGS resis-
tance data, a vital resource that will aid future susceptibility testing 
(31). The developing role of WGS in M. tuberculosis resistance test-
ing has been explored in further detail in other work (87–89).

Novel drugs
The past decade has seen a renewed effort toward the development 
of new antitubercular drugs, with the successful implementation 
of bedaquiline, delamanid, and pretomanid for MDR-TB (10, 11). 
At all stages of this process, from initial laboratory characterization 
to optimization of clinical regimens, WGS has proven essential. 
In the case of bedaquiline, a consistent atpE resistance mutant in 
vitro revealed that this drug uniquely targeted ATP synthesis and 
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bacterial populations, with drug resistance driven by mutants that 
are initially detectable only at low levels (32–34). Most population 
heterogeneity was driven by SNPs with less than 20% frequency, 
and indeed a population prevalence of merely 19% was estimated 
to be the threshold required for a drug resistance variant to pro-
ceed toward fixation (33, 34). The most common variation at the 
nucleotide level was the GC > AT transition, predicted to be a prod-
uct of oxidative damage faced by the bacterium in the host macro-
phage, which was first noted in prior nonhuman primate data (34, 
119). This latter model also found that M. tuberculosis mutation 
rates remained similar in active, latent, and reactivated TB dis-
ease, a striking finding given that LTBI was previously believed to 
reflect low numbers of bacilli with little or no replication and thus 
a negligible risk of mutation. Such findings raise the concern that 
the use of isoniazid monotherapy for 9 months as secondary pre-
vention for LTBI would potentially risk isoniazid resistance (119–
121). Consistent with the threat of resistance due to inadequate 
treatment, M. tuberculosis WGS data during active TB treatment 
showed a risk of excessive drug resistance mutations in patients 
receiving fewer than 4 effective drugs (33). These results collec-
tively underscore the high threshold for adequate antimicrobial 
pressure, below which even rare M. tuberculosis resistance mutants  
can ultimately reach fixation within a patient. Additionally, there 
is some evidence linking high intra-host M. tuberculosis diversity 
to worse TB severity metrics (122). It remains to be seen wheth-
er the use of WGS to query M. tuberculosis heterogeneity within a 
patient has a role as a disease prognostic marker or for monitoring 
the development of resistance.

Epidemiological studies tracking M. tuberculosis strains and lin-
eages are greatly aided, if not outright enabled, by the slow muta-
tion rate of the organism. In vitro, the M. tuberculosis genome is 
remarkably stable, with mutations mainly at the level of individual 
bases; polymorphisms due to polymerase errors in repetitive micro-
satellite regions are comparatively rarer than would be expected by 
chance, and large-scale chromosomal rearrangements are almost 
entirely absent (44, 123). Complicating the earlier finding of a low, 
constant mutation rate in nonhuman primates, subsequent stud-
ies using deeper sequencing in human patients found substantial 
population heterogeneity, suggesting that the in vivo mutation rate 
may be higher than that observed in vitro (32–34, 119). Addition-
ally, the Beijing sublineage of M. tuberculosis has been proposed 
to acquire antimicrobial resistance more rapidly owing to a faster 
mutation rate, though this remains controversial (123–127).

Molecular epidemiology of drug-resistance emergence. Public 
health interventions that target the emergence of drug-resis-
tant TB are severely needed. Successful treatment outcomes are 
achieved in just under 60% of patients with MDR-TB globally 
and only 40% of patients with XDR-TB, and some cohorts experi-
ence much less success in the latter case (1, 128, 129). Algorithms 
that calculate the most parsimonious path to a common ancestor 
strain enable so-called molecular clock analyses that predict the 
order in which SNPs, including those conferring drug resistance, 
arise within a pool of clinical isolates. When applied to WGS data 
of contemporary isolates from the KwaZulu-Natal province of 
South Africa, these tools predicted that the evolution of current 
XDR strains in South Africa began in the mid-1950s, with isonia-
zid mono-resistance occurring first, followed by sequential accu-

ficient for initial surveillance, though WGS allows for more precise 
tracing of spread through a community (5, 6). A systematic com-
parison of MIRU-VNTR and WGS found that MIRU-VNTR can 
help exclude transmission events on the basis of differences, but 
it is much less accurate for positively predicting transmission by 
strain relatedness (106). In addition, MIRU-VNTR predictive effi-
cacy varies by M. tuberculosis lineage, with L2 in particular known 
to have poor discrimination due to evolutionary convergence in its 
VNTR regions (106, 107). Aggregate WGS surveillance data are 
more consistently accurate and can be systematically analyzed for 
variables such as M. tuberculosis sublineage and frequency of resis-
tance polymorphisms, although currently the majority of M. tuber-
culosis isolates are not sequenced (49). To potentially decrease 
the computational load of screening the entire M. tuberculosis 
genome, a minimal set of SNPs has been proposed as a barcode 
to stratify M. tuberculosis sublineages as a rapid surveillance tool 
(55, 56). While widespread use of WGS for surveillance is limit-
ed by expense and expertise, particularly in high-burden settings, 
access may expand in the future as cost improves (108).

Recent versus remote transmission of TB. Prior to the 1990s, the 
prevailing belief held that the majority of active TB cases were the 
result of endogenous reactivation of latent TB infection (LTBI) 
that was acquired remotely in time (109). However, in the early 
1990s, IS6110 molecular typing of large M. tuberculosis strain 
banks collected contemporaneously from active TB cases across 
US cities yielded the unexpected result that approximately 40% 
of strains matched another isolate in the collection (110–112). In 
some instances, it was possible to establish epidemiological links 
between individuals with matching strains (112). This suggested 
that recently transmitted TB could lead to active TB disease in 
a short period of time rather than requiring reactivation of LTBI 
acquired years or decades earlier. Such findings, based on M. 
tuberculosis genomic data, have prompted some to make the con-
troversial argument that most infected individuals are cleared 
of bacteria after two years and are therefore no longer at risk for 
reactivation of LTBI (113, 114). The issue has important ramifi-
cations for how intensively public health organizations should 
seek out individuals with LTBI to provide secondary prevention 
therapy with isoniazid for 9 months or a shorter-course regimen 
(115, 116). Indeed, there has been a trend in the United States to 
limit LTBI testing by tuberculin skin test or interferon-γ release 
assay to select high-risk groups (117). Interestingly, recent work 
using WGS to address the matter of recent versus remote infec-
tion found that longer latency times do not necessarily correlate 
with SNP distance — a finding that calls into question the reliabili-
ty of genomic determinants in estimating the recency of infection 
(118). Additional studies using high sequencing depth to query M. 
tuberculosis mutation rates in human patients, particularly during 
paucibacillary states, may refine the relationship between the rate 
of M. tuberculosis mutation acquisition and latency time to enhance 
epidemiological tracking tools.

WGS to determine mutation rates in latent versus active TB. In 
addition to studying the emergence of particular variants of inter-
est across broad geographies, WGS offers the capability of exam-
ining mutational changes in the M. tuberculosis population within a 
single individual. Studies of M. tuberculosis genomes from patients 
receiving TB treatment have consistently found heterogeneity in 
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mulation of additional drug resistance mutations over time (35). 
In addition, this work predicted a rapid acquisition of rifampicin 
resistance polymorphisms once M. tuberculosis acquired isoniazid 
mono-resistance and found both preexisting and novel mutations 
likely to compensate for the fitness costs of acquiring rifampicin 
resistance (35). Broadening this WGS approach to encompass 
a global range of M. tuberculosis isolates revealed a similar find-
ing: that the Ser315Thr mutation in katG conferring isoniazid 
resistance occurred prior to rifampicin resistance in over 90% of 
measured instances, regardless of time period or geography (36). 
Notably, isoniazid mono-resistance is not detected by the Xpert 
MTB/RIF cartridge, a broadly used molecular test to both diag-
nose TB and screen for common rifampicin resistance mutations 
(130). As a result, TB cases found to be rifampicin-susceptible by 
Xpert receive standard TB therapy using only two drugs — isonia-
zid and rifampicin — in the 4-month continuation phase (120, 121). 
Thus, undetected isoniazid–mono-resistant cases may receive the 
equivalent of unprotected rifampicin monotherapy, thereby risk-
ing rapid loss of rifampicin susceptibility.

BCG
The only currently approved and effective TB vaccine is BCG, a 
live, attenuated derivative of M. bovis developed by serial passage 
in vitro over a 13-year period (131). This vaccine strain was rapidly 
distributed at global scale and maintained as numerous daugh-
ter strains (Figure 3) that underwent decades of further passages 
prior to the advent of bacterial storage technology. Consequently, 
these various BCG strains contain overlapping but distinct sub-
sets of RDs from the parental M. bovis. Chief among these, RD1 
is absent from all BCG strains but present in virulent M. bovis iso-
lates (132). RD1 deletions in three distinct M. tuberculosis strains 
and M. bovis caused avirulence, which was restored by comple-
mentation, validating RD1 as the primary attenuating mutation 

in BCG (25). Beyond RD1, however, the BCG daughter strains 
are not uniform for the remaining RDs and possess additional 
polymorphisms beyond the RD deletions (12, 15, 134). Numerous 
studies have examined the TB protection conferred by the global 
BCG repertoire in animal models and consistently found measur-
able differences between BCG strains (12–14, 135). Additionally, 
BCG strains differ in their predicted T cell epitopes, gene expres-
sion, and virulence toward immune-deficient mice, among other 
properties (12, 14, 136, 137). This variability extends to compar-
ative studies of differing BCG strains in infants, as assessed by 
immune metrics (138–141). It is not clear at present whether these 
findings should influence the choice of BCG vaccine strain in 
different settings, particularly because of the infrastructural and 
ethical challenges associated with such a decision. As genome 
sequencing uncovers higher-resolution information regarding 
the global diversity of BCG strains, it is challenging to identify 
a consistent impact of these polymorphisms on clinical efficacy. 
However, this body of work clearly justifies additional consider-
ation in BCG strain selection for laboratory studies, particularly if 
the aim is to generate an improved TB vaccine (142).

There remain additional opportunities to make further 
use of WGS related to the BCG vaccine. Surveillance of BCG 
seed lots using deep sequencing has uncovered heterogeneity 
between and even within lots (143, 144). In select instances, 
variants were identified in known virulence-promoting genes or 
in secretory loci that may alter the antigenic profile of the vac-
cine (144). BCG diversity extends far beyond the large genomic 
deletions classified as RDs, and many variants similarly impact 
cell wall and secretory factors predicted to interact with the host 
(12, 137). Additional data regarding BCG protective efficacy and 
adverse outcomes may uncover determinants of mycobacterial 
immunogenicity if these vaccine properties can be consistently 
correlated to BCG genotype.

Figure 3. Genealogy of BCG daugh-
ter strains. Evolutionary trajectory 
depicting selected regions of differ-
ence (RDs) that define the modern 
BCG vaccine strains in relation 
to the parental virulent M. bovis. 
Strains are clustered by the pres-
ence of tandem duplications (DU1 
and DU2). Adapted with permission 
from Vaccines (173).
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PE/PPE proteins
While most proteins in the M. tuberculosis genome could be clas-
sified into known or putative functions once their sequences were 
obtained, there remained 16% without similarity to previously 
known proteins (4). Among these are the PE and PPE families, 
named for the conserved Pro-Glu and Pro-Pro-Glu amino acids 
near their N-termini, which were uniquely discovered by M. tuber-
culosis WGS (4). Phylogenetic analysis of these families revealed a 
massive duplication of these proteins in pathogenic mycobacteria, 
especially the PE_PGRS (polymorphic GC-rich repeat sequence) 
and the PPE-MPTR (major polymorphic tandem repeat) subfami-
lies (145). Notably, this expansion was predated by the duplication 
of the ESX-2 secretion system to yield ESX-5, the most recently 
evolved type VII secretion system in M. tuberculosis (145, 146). 
The ESX-5 system was subsequently found to secrete PE/PPE 
proteins via a conserved secretion signal on the C-terminus of 
the PE and PPE domains, potentially rendering ESX-5 responsi-
ble for the export of approximately 150 members of the largely 
uncharacterized PE/PPE families (147, 148). Saturating trans-
poson mutagenesis demonstrated that the vast majority of PE/
PPE proteins are nonessential for M. tuberculosis growth in vitro, 
suggesting instead a role during infection (149–151). Indeed, an M. 
tuberculosis strain deficient for ESX-5 showed attenuation in mice, 
and PE/PPE proteins are highly secreted in M. tuberculosis animal 
models and human infections (152–156). Intriguingly, mutation 
at the ppe38 locus impairs secretion of many PE_PGRS and PPE-
MPTR proteins but increases virulence, which is notable because 
the hypervirulent Beijing sublineage possesses this mutation (157, 
158). As a class, PE/PPE genes show frequent polymorphisms and 
recombination events across clinical strains, which may impact 
their efficacy as antigens and putative vaccine candidates; the 
PPE18 component of the M72/AS01E vaccine has over 60 known 
non-synonymous SNPs, for example (159, 160). Clear functions 
have been identified for several family members, but most remain 
weakly characterized (161, 162). Relatedly, reads encompassing 
these genes are often omitted from M. tuberculosis WGS and simi-
lar studies owing to the high similarity between family members. 
Other reviews document the growing understanding of the roles 
of PE/PPE proteins during M. tuberculosis infection (163–165).

Essentiality and vulnerability
With the immense global need for novel antitubercular drugs, the 
M. tuberculosis genome was probed to uncover targetable pathways 
almost as soon as it was reported in 1998. Transposon sequencing 
(TnSeq) uses mobile genetic elements to create loss-of-function 
insertions across the bacterial genome. Large pooled libraries of M. 
tuberculosis strains with single transposon insertions are then eval-
uated in different environmental conditions to identify mutants 
that decrease in abundance over time, suggesting fitness defects 
conferred by disruption of individual genes. This approach identi-
fied genes essential for growth in vitro, a candidate list for poten-
tial therapeutic intervention (149–151). To identify M. tuberculosis 
genes essential in vivo and determine the subset of these factors 
that interact with host genotype, an M. tuberculosis transposon 
library was infected into the Collaborative Cross panel of outbred 
mice (39, 166). Notably, expanding the range of mouse genotypes 
more than doubled the number of M. tuberculosis genes implicat-

ed in infecting at least one host background (39). This study made 
exceptional use of WGS technology in a rigorous attempt to model 
interindividual diversity during M. tuberculosis infection.

TnSeq is valuable in building breadth of understanding about 
the M. tuberculosis genome, but an ideal ranking scheme would 
quantitatively prioritize candidate essential genes where pharma-
cological inhibition would be most lethal for the pathogen. This is 
the basis of “vulnerability” studies, which have demonstrated that 
certain bacterial pathways are highly susceptible to low levels of 
depletion while others are durable even to near-total knockdown 
(167, 168). Recently, this concept has incorporated CRISPR inter-
ference (CRISPRi), which uses a deactivated version of the Cas 
machinery that acts as a sequence-specific transcriptional repres-
sor. This targeted approach allows the tuning of expression levels 
across almost all essential genes of M. tuberculosis (37). Adapting 
this approach to a chemical-genetic design demonstrated known 
and new resistance pathways for first- and second-line TB drugs, 
including cell envelope and stress response pathways that caused 
broad cross-resistance to many compounds (38). Most excitingly, 
this study identified a new whiB7 polymorphism that caused mac-
rolide hypersensitivity in a particular M. tuberculosis L1 sublineage 
and further showed that mice infected with an L1 strain respond-
ed well to clarithromycin therapy in a short-term model. Addition 
of a macrolide to standard TB therapy might accelerate the treat-
ment time for TB patients in Southeast Asia who are infected by 
L1 strains with this polymorphism (38). This recently reported 
example of unexpected macrolide susceptibility in an appreciable 
number of TB strains in Asia represents a promising example of 
how M. tuberculosis genomics can yield clinical solutions.

Conclusions and lingering questions
The M. tuberculosis genome sequence and subsequent M. tubercu-
losis WGS efforts have impacted nearly every aspect of the TB field. 
Many therapeutic innovations, including the newest generation of 
antitubercular drugs, rely on this technology for an improved abil-
ity to identify therapeutic targets and track resistance mechanisms 
(81, 95, 96). Diagnostic advancements, such as the Xpert MTB/
XDR assay, likewise hinge on the growing power of M. tuberculosis 
genomics (8, 84, 85). Epidemiological surveillance of TB has been 
extensively informed by WGS both to track spread within com-
munities and to follow M. tuberculosis lineages across broader pat-
terns of geographic and temporal spread (6, 36, 49). Innovations 
stemming from the M. tuberculosis genome sequence will likely 
further broaden in the coming years, as findings from patient-lev-
el investigations and innovative whole-genome bacteriological 
designs are pursued for translational application (32–34, 37, 38).

While the genome sequence is a valuable road map, it is import-
ant to note that causality of phenotypes cannot be concluded from 
DNA sequences but rather requires gene transfer technologies 
based on plasmids, phage elements, and gene recombination tools 
(16–27). The many understudied variants seen in M. tuberculosis 
clinical isolates may provide additional insight into bacterial fac-
tors that promote host infection (31, 86, 159, 160). Relatedly, there 
is growing interest in associating bacterial and human genome 
variations to demonstrate bidirectional selective pressure exerted 
by the pathogen and the host immune system on one another (53, 
54, 68, 71–74). We note as well several examples in which WGS 
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